Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Front Immunol ; 15: 1390022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698851

RESUMEN

Purpose: Previous studies have demonstrated that the majority of patients with an inborn error of immunity (IEI) develop a spike (S)-specific IgG antibody and T-cell response after two doses of the mRNA-1273 COVID-19 vaccine, but little is known about the response to a booster vaccination. We studied the immune responses 8 weeks after booster vaccination with mRNA-based COVID-19 vaccines in 171 IEI patients. Moreover, we evaluated the clinical outcomes in these patients one year after the start of the Dutch COVID-19 vaccination campaign. Methods: This study was embedded in a large prospective multicenter study investigating the immunogenicity of COVID-19 mRNA-based vaccines in IEI (VACOPID study). Blood samples were taken from 244 participants 8 weeks after booster vaccination. These participants included 171 IEI patients (X-linked agammaglobulinemia (XLA;N=11), combined immunodeficiency (CID;N=4), common variable immunodeficiency (CVID;N=45), isolated or undefined antibody deficiencies (N=108) and phagocyte defects (N=3)) and 73 controls. SARS-CoV-2-specific IgG titers, neutralizing antibodies, and T-cell responses were evaluated. One year after the start of the COVID-19 vaccination program, 334 study participants (239 IEI patients and 95 controls) completed a questionnaire to supplement their clinical data focusing on SARS-CoV-2 infections. Results: After booster vaccination, S-specific IgG titers increased in all COVID-19 naive IEI cohorts and controls, when compared to titers at 6 months after the priming regimen. The fold-increases did not differ between controls and IEI cohorts. SARS-CoV-2-specific T-cell responses also increased equally in all cohorts after booster vaccination compared to 6 months after the priming regimen. Most SARS-CoV-2 infections during the study period occurred in the period when the Omicron variant had become dominant. The clinical course of these infections was mild, although IEI patients experienced more frequent fever and dyspnea compared to controls and their symptoms persisted longer. Conclusion: Our study demonstrates that mRNA-based booster vaccination induces robust recall of memory B-cell and T-cell responses in most IEI patients. One-year clinical follow-up demonstrated that SARS-CoV-2 infections in IEI patients were mild. Given our results, we support booster campaigns with newer variant-specific COVID-19 booster vaccines to IEI patients with milder phenotypes.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Inmunogenicidad Vacunal , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/prevención & control , Masculino , Femenino , SARS-CoV-2/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Adulto , Persona de Mediana Edad , Vacuna nCoV-2019 mRNA-1273/inmunología , Estudios de Seguimiento , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Estudios Prospectivos , Linfocitos T/inmunología , Adulto Joven , Vacunación , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Síndromes de Inmunodeficiencia/inmunología , Adolescente
2.
Euro Surveill ; 29(17)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38666400

RESUMEN

BackgroundFollowing the 2022-2023 mpox outbreak, crucial knowledge gaps exist regarding orthopoxvirus-specific immunity in risk groups and its impact on future outbreaks.AimWe combined cross-sectional seroprevalence studies in two cities in the Netherlands with mathematical modelling to evaluate scenarios of future mpox outbreaks among men who have sex with men (MSM).MethodsSerum samples were obtained from 1,065 MSM attending Centres for Sexual Health (CSH) in Rotterdam or Amsterdam following the peak of the Dutch mpox outbreak and the introduction of vaccination. For MSM visiting the Rotterdam CSH, sera were linked to epidemiological and vaccination data. An in-house developed ELISA was used to detect vaccinia virus (VACV)-specific IgG. These observations were combined with published data on serial interval and vaccine effectiveness to inform a stochastic transmission model that estimates the risk of future mpox outbreaks.ResultsThe seroprevalence of VACV-specific antibodies was 45.4% and 47.1% in Rotterdam and Amsterdam, respectively. Transmission modelling showed that the impact of risk group vaccination on the original outbreak was likely small. However, assuming different scenarios, the number of mpox cases in a future outbreak would be markedly reduced because of vaccination. Simultaneously, the current level of immunity alone may not prevent future outbreaks. Maintaining a short time-to-diagnosis is a key component of any strategy to prevent new outbreaks.ConclusionOur findings indicate a reduced likelihood of large future mpox outbreaks among MSM in the Netherlands under current conditions, but emphasise the importance of maintaining population immunity, diagnostic capacities and disease awareness.


Asunto(s)
Brotes de Enfermedades , Homosexualidad Masculina , Humanos , Masculino , Países Bajos/epidemiología , Estudios Seroepidemiológicos , Estudios Transversales , Homosexualidad Masculina/estadística & datos numéricos , Adulto , Persona de Mediana Edad , Vaccinia/epidemiología , Anticuerpos Antivirales/sangre , Vacunación/estadística & datos numéricos , Adulto Joven , Modelos Teóricos , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina G/sangre
3.
Clin Pharmacokinet ; 63(4): 497-509, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38427270

RESUMEN

BACKGROUND AND OBJECTIVE: During the COVID-19 pandemic, trials on convalescent plasma (ConvP) were performed without preceding dose-finding studies. This study aimed to assess potential protective dosing regimens by constructing a population pharmacokinetic (popPK) model describing anti-SARS-CoV-2 antibody titers following the administration of ConvP or hyperimmune globulins (COVIg). METHODS: Immunocompromised patients, testing negative for anti-SARS-CoV-2 spike antibodies despite vaccination, received a range of anti-SARS-CoV-2 antibodies in the form of COVIg or ConvP infusion. The popPK analysis was performed using NONMEM v7.4. Monte Carlo simulations were performed to assess potential COVIg and ConvP dosing regimens for prevention of COVID-19. RESULTS: Forty-four patients were enrolled, and data from 42 were used for constructing the popPK model. A two-compartment elimination model with mixed residual error best described the Nab-titers after administration. Inter-individual variation was associated to CL (44.3%), V1 (27.3%), and V2 (29.2%). Lean body weight and type of treatment (ConvP/COVIg) were associated with V1 and V2, respectively. Median elimination half-life was 20 days (interquartile range: 17-25 days). Simulations demonstrated that even monthly infusions of 600 mL of the ConvP or COVIg used in this trial would not achieve potentially protective serum antibody titers for > 90% of the time. However, as a result of hybrid immunity and/or repeated vaccination, plasma donors with extremely high antibody titers are now readily available, and a > 90% target attainment should be possible. CONCLUSION: The results of this study may inform future intervention studies on the prophylactic and therapeutic use of antiviral antibodies in the form of ConvP or COVIg. CLINICAL TRIAL REGISTRATION NUMBER: NL9379 (The Netherlands Trial Register).


Asunto(s)
Anticuerpos Antivirales , Sueroterapia para COVID-19 , COVID-19 , Inmunización Pasiva , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/administración & dosificación , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Inmunización Pasiva/métodos , Huésped Inmunocomprometido , Modelos Biológicos , Método de Montecarlo
4.
J Virol ; 98(3): e0187423, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38329336

RESUMEN

Subacute sclerosing panencephalitis (SSPE) is a rare but fatal late neurological complication of measles, caused by persistent measles virus (MeV) infection of the central nervous system. There are no drugs approved for the treatment of SSPE. Here, we followed the clinical progression of a 5-year-old SSPE patient after treatment with the nucleoside analog remdesivir, conducted a post-mortem evaluation of the patient's brain, and characterized the MeV detected in the brain. The quality of life of the patient transiently improved after the first two courses of remdesivir, but a third course had no further clinical effect, and the patient eventually succumbed to his condition. Post-mortem evaluation of the brain displayed histopathological changes including loss of neurons and demyelination paired with abundant presence of MeV RNA-positive cells throughout the brain. Next-generation sequencing of RNA isolated from the brain revealed a complete MeV genome with mutations that are typically detected in SSPE, characterized by a hypermutated M gene. Additional mutations were detected in the polymerase (L) gene, which were not associated with resistance to remdesivir. Functional characterization showed that mutations in the F gene led to a hyperfusogenic phenotype predominantly mediated by N465I. Additionally, recombinant wild-type-based MeV with the SSPE-F gene or the F gene with the N465I mutation was no longer lymphotropic but instead efficiently disseminated in neural cultures. Altogether, this case encourages further investigation of remdesivir as a potential treatment of SSPE and highlights the necessity to functionally understand SSPE-causing MeV.IMPORTANCEMeasles virus (MeV) causes acute, systemic disease and remains an important cause of morbidity and mortality in humans. Despite the lack of known entry receptors in the brain, MeV can persistently infect the brain causing the rare but fatal neurological disorder subacute sclerosing panencephalitis (SSPE). SSPE-causing MeVs are characterized by a hypermutated genome and a hyperfusogenic F protein that facilitates the rapid spread of MeV throughout the brain. No treatment against SSPE is available, but the nucleoside analog remdesivir was recently demonstrated to be effective against MeV in vitro. We show that treatment of an SSPE patient with remdesivir led to transient clinical improvement and did not induce viral escape mutants, encouraging the future use of remdesivir in SSPE patients. Functional characterization of the viral proteins sheds light on the shared properties of SSPE-causing MeVs and further contributes to understanding how those viruses cause disease.


Asunto(s)
Adenosina Monofosfato , Alanina , Virus del Sarampión , Sarampión , Panencefalitis Esclerosante Subaguda , Proteínas Virales , Preescolar , Humanos , Adenosina Monofosfato/administración & dosificación , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/uso terapéutico , Alanina/administración & dosificación , Alanina/análogos & derivados , Alanina/uso terapéutico , Autopsia , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/virología , Progresión de la Enfermedad , Resultado Fatal , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Sarampión/complicaciones , Sarampión/tratamiento farmacológico , Sarampión/virología , Virus del Sarampión/efectos de los fármacos , Virus del Sarampión/genética , Virus del Sarampión/metabolismo , Proteínas Mutantes/análisis , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Calidad de Vida , ARN Viral/análisis , ARN Viral/genética , Panencefalitis Esclerosante Subaguda/tratamiento farmacológico , Panencefalitis Esclerosante Subaguda/etiología , Panencefalitis Esclerosante Subaguda/virología , Proteínas Virales/análisis , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
J Infect Dis ; 229(1): 137-146, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-37675756

RESUMEN

BACKGROUND: Mucosal antibodies play a critical role in preventing SARS-CoV-2 infections or reinfections by blocking the interaction of the receptor-binding domain (RBD) with the angiotensin-converting enzyme 2 (ACE2) receptor on the cell surface. In this study, we investigated the difference between the mucosal antibody response after primary infection and vaccination. METHODS: We assessed longitudinal changes in the quantity and capacity of nasal antibodies to neutralize the interaction of RBD with the ACE2 receptor using the spike protein and RBD from ancestral SARS-CoV-2 (Wuhan-Hu-1), as well as the RBD from the Delta and Omicron variants. RESULTS: Significantly higher mucosal IgA concentrations were detected postinfection vs postvaccination, while vaccination induced higher IgG concentrations. However, ACE2-inhibiting activity did not differ between the cohorts. Regarding whether IgA or IgG drove ACE2 inhibition, infection-induced binding inhibition was driven by both isotypes, while postvaccination binding inhibition was mainly driven by IgG. CONCLUSIONS: Our study provides new insights into the relationship between antibody isotypes and neutralization by using a sensitive and high-throughput ACE2 binding inhibition assay. Key differences are highlighted between vaccination and infection at the mucosal level, showing that despite differences in the response quantity, postinfection and postvaccination ACE2 binding inhibition capacity did not differ.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2 , COVID-19/prevención & control , Vacunación , Inmunoglobulina A , Inmunoglobulina G , Glicoproteína de la Espiga del Coronavirus , Unión Proteica
7.
Vaccines (Basel) ; 11(12)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38140254

RESUMEN

Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare autoimmune condition associated with recombinant adenovirus (rAV)-based COVID-19 vaccines. It is thought to arise from autoantibodies targeting platelet factor 4 (aPF4), triggered by vaccine-induced inflammation and the formation of neo-antigenic complexes between PF4 and the rAV vector. To investigate the specific induction of aPF4 by rAV-based vaccines, we examined sera from rAV vaccine recipients (AZD1222, AD26.COV2.S) and messenger RNA (mRNA) based (mRNA-1273, BNT162b2) COVID-19 vaccine recipients. We compared the antibody fold change (FC) for aPF4 and for antiphospholipid antibodies (aPL) of rAV to mRNA vaccine recipients. We combined two biobanks of Dutch healthcare workers and matched rAV-vaccinated individuals to mRNA-vaccinated controls, based on age, sex and prior history of COVID-19 (AZD1222: 37, Ad26.COV2.S: 35, mRNA-1273: 47, BNT162b2: 26). We found no significant differences in aPF4 FCs after the first (0.99 vs. 1.08, mean difference (MD) = -0.11 (95% CI -0.23 to 0.057)) and second doses of AZD1222 (0.99 vs. 1.10, MD = -0.11 (95% CI -0.31 to 0.10)) and after a single dose of Ad26.COV2.S compared to mRNA-based vaccines (1.01 vs. 0.99, MD = 0.026 (95% CI -0.13 to 0.18)). The mean FCs for the aPL in rAV-based vaccine recipients were similar to those in mRNA-based vaccines. No correlation was observed between post-vaccination aPF4 levels and vaccine type (mean aPF difference -0.070 (95% CI -0.14 to 0.002) mRNA vs. rAV). In summary, our study indicates that rAV and mRNA-based COVID-19 vaccines do not substantially elevate aPF4 levels in healthy individuals.

8.
Antimicrob Resist Infect Control ; 12(1): 137, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031155

RESUMEN

BACKGROUND: We aimed to estimate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence and describe its determinants and associated symptoms among unvaccinated healthcare workers (HCWs) after the first wave of the pandemic. METHODS: HCWs from 13 Dutch hospitals were screened for antibodies against the spike protein of SARS-CoV-2 in June-July 2020 and after three months. Participants completed a retrospective questionnaire on determinants for occupational and community exposure to SARS-CoV-2 and symptoms suggestive of COVID-19 experienced since January 2020. The seroprevalence was calculated per baseline characteristic and symptom at baseline and after follow-up. Adjusted odds ratios (aOR) for seropositivity were determined using logistic regression. RESULTS: Among 2328 HCWs, 323 (13.9%) were seropositive at enrolment, 49 of whom (15%) reported no previous symptoms suggestive of COVID-19. During follow-up, only 1% of the tested participants seroconverted. Seroprevalence was higher in younger HCWs compared to the mid-age category (aOR 1.53, 95% CI 1.07-2.18). Nurses (aOR 2.21, 95% CI 1.34-3.64) and administrative staff (aOR 1.87, 95% CI 1.02-3.43) had a higher seroprevalence than physicians. The highest seroprevalence was observed in HCWs in the emergency department (ED) (aOR 1.79, 95% CI 1.10-2.91), the lowest in HCWs in the intensive, high, or medium care units (aOR 0.47, 95% CI 0.31-0.71). Chronic respiratory disease, smoking, and having a dog were independently associated with a lower seroprevalence, while HCWs with diabetes mellitus had a higher seroprevalence. In a multivariable model containing all self-reported symptoms since January 2020, altered smell and taste, fever, general malaise/fatigue, and muscle aches were positively associated with developing antibodies, while sore throat and chills were negatively associated. CONCLUSIONS: The SARS-CoV-2 seroprevalence in unvaccinated HCWs of 13 Dutch hospitals was 14% in June-July 2020 and remained stable after three months. A higher seroprevalence was observed in the ED and among nurses, administrative and young staff, and those with diabetes mellitus, while a lower seroprevalence was found in HCWs in intensive, high, or medium care, and those with self-reported lung disease, smokers, and dog owners. A history of altered smell or taste, fever, muscle aches and fatigue were independently associated with the presence of SARS-CoV-2 antibodies in unvaccinated HCWs.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Humanos , Anticuerpos Antivirales/sangre , COVID-19/epidemiología , Estudios Transversales , Diabetes Mellitus , Fatiga , Estudios de Seguimiento , Personal de Salud , Hospitales , Dolor , Estudios Prospectivos , Estudios Retrospectivos , Estudios Seroepidemiológicos , Países Bajos
9.
Am J Trop Med Hyg ; 109(6): 1277-1281, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37972322

RESUMEN

Macacine alphaherpesvirus 1, also known as herpes B virus (BV), is an alphaherpesvirus endemic to several macaque species, capable of causing zoonotic infections in humans, with high mortality rates. Evidence of reactivation in humans has rarely been reported. Here we depict a case of BV reactivation after 54 years, leading to severe meningoencephalitis. This case supports the use of antiviral prophylaxis in patients surviving a confirmed BV central nervous system infection. We sequenced DNA from BV obtained from the patient's cerebrospinal fluid. Phylogenetic analysis showed significant divergence in the clustering of this particular BV strain compared with other known BVs. Therefore, additional efforts are needed to obtain a broader sequence landscape from BVs circulating in monkeys.


Asunto(s)
Herpesvirus Cercopitecino 1 , Meningoencefalitis , Animales , Humanos , Herpesvirus Cercopitecino 1/genética , Macaca , Meningoencefalitis/complicaciones , Filogenia , Zoonosis , Femenino , Anciano
10.
Front Immunol ; 14: 1254899, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881427

RESUMEN

Background: Many patients with SARS-CoV-2 infection develop long COVID with fatigue as one of the most disabling symptoms. We performed clinical and immune profiling of fatigued and non-fatigued long COVID patients and age- and sex-matched healthy controls (HCs). Methods: Long COVID symptoms were assessed using patient-reported outcome measures, including the fatigue assessment scale (FAS, scores ≥22 denote fatigue), and followed up to one year after hospital discharge. We assessed inflammation-related genes in circulating monocytes, serum levels of inflammation-regulating cytokines, and leukocyte and lymphocyte subsets, including major monocyte subsets and senescent T-lymphocytes, at 3-6 months post-discharge. Results: We included 37 fatigued and 36 non-fatigued long COVID patients and 42 HCs. Fatigued long COVID patients represented a more severe clinical profile than non-fatigued patients, with many concurrent symptoms (median 9 [IQR 5.0-10.0] vs 3 [1.0-5.0] symptoms, p<0.001), and signs of cognitive failure (41%) and depression (>24%). Immune abnormalities that were found in the entire group of long COVID patients were low grade inflammation (increased inflammatory gene expression in monocytes, increased serum pro-inflammatory cytokines) and signs of T-lymphocyte senescence (increased exhausted CD8+ TEMRA-lymphocytes). Immune profiles did not significantly differ between fatigued and non-fatigued long COVID groups. However, the severity of fatigue (total FAS score) significantly correlated with increases of intermediate and non-classical monocytes, upregulated gene levels of CCL2, CCL7, and SERPINB2 in monocytes, increases in serum Galectin-9, and higher CD8+ T-lymphocyte counts. Conclusion: Long COVID with fatigue is associated with many concurrent and persistent symptoms lasting up to one year after hospitalization. Increased fatigue severity associated with stronger signs of monocyte activation in long COVID patients and potentially point in the direction of monocyte-endothelial interaction. These abnormalities were present against a background of immune abnormalities common to the entire group of long COVID patients.


Asunto(s)
COVID-19 , Linfocitos T , Humanos , Monocitos , COVID-19/complicaciones , Síndrome Post Agudo de COVID-19 , Cuidados Posteriores , SARS-CoV-2 , Alta del Paciente , Fatiga , Citocinas , Inflamación/complicaciones
11.
Lancet Reg Health Eur ; 29: 100628, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37261212

RESUMEN

Background: Novel mRNA-based vaccines have been used to protect against SARS-CoV-2, especially in vulnerable populations who also receive an annual influenza vaccination. The TACTIC study investigated potential immune interference between the mRNA COVID-19 booster vaccine and the quadrivalent influenza vaccine, and determined if concurrent administration would have effects on safety or immunogenicity. Methods: TACTIC was a single-blind, placebo-controlled randomized clinical trial conducted at the Radboud University Medical Centre, the Netherlands. Individuals ≥60 years, fully vaccinated against COVID-19 were eligible for participation and randomized into one of four study groups: 1) 0.5 ml influenza vaccination Vaxigrip Tetra followed by 0.3 ml BNT162b2 COVID-19 booster vaccination 21 days later, (2) COVID-19 booster vaccination followed by influenza vaccination, (3) influenza vaccination concurrent with the COVID-19 booster vaccination, and (4) COVID-19 booster vaccination only (reference group). Primary outcome was the geometric mean concentration (GMC) of IgG against the spike (S)-protein of the SARS-CoV-2 virus, 21 days after booster vaccination. We performed a non-inferiority analysis of concurrent administration compared to booster vaccines alone with a predefined non-inferiority margin of -0.3 on the log10-scale. Findings: 154 individuals participated from October, 4, 2021, until November, 5, 2021. Anti-S IgG GMCs for the co-administration and reference group were 1684 BAU/ml and 2435 BAU/ml, respectively. Concurrent vaccination did not meet the criteria for non-inferiority (estimate -0.1791, 95% CI -0.3680 to -0.009831) and antibodies showed significantly lower neutralization capacity compared to the reference group. Reported side-effects were mild and did not differ between study groups. Interpretation: Concurrent administration of both vaccines is safe, but the quantitative and functional antibody responses were marginally lower compared to booster vaccination alone. Lower protection against COVID-19 with concurrent administration of COVID-19 and influenza vaccination cannot be excluded, although additional larger studies would be required to confirm this. Trial registration number: EudraCT: 2021-002186-17. Funding: The study was supported by the ZonMw COVID-19 Programme.

12.
Am J Transplant ; 23(9): 1411-1424, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37270109

RESUMEN

T-cell-mediated help to B cells is required for the development of humoral responses, in which the cytokine interleukin (IL)-21 is key. Here, we studied the mRNA-1273 vaccine-induced SARS-CoV-2-specific memory T-cell IL-21 response, memory B cell response, and immunoglobulin (Ig)G antibody levels in peripheral blood at 28 days after the second vaccination by ELISpot and the fluorescent bead-based multiplex immunoassay, respectively. We included 40 patients with chronic kidney disease (CKD), 34 patients on dialysis, 63 kidney transplant recipients (KTR), and 47 controls. We found that KTR, but not patients with CKD and those receiving dialysis, showed a significantly lower number of SARS-CoV-2-specific IL-21 producing T cells than controls (P < .001). KTR and patients with CKD showed lower numbers of SARS-CoV-2-specific IgG-producing memory B cells when compared with controls (P < .001 and P = .01, respectively). The T-cell IL-21 response was positively associated with the SARS-CoV-2-specific B cell response and the SARS-CoV-2 spike S1-specific IgG antibody levels (both Pearson r = 0.5; P < .001). In addition, SARS-CoV-2-specific B cell responses were shown to be IL-21 dependent. Taken together, we show that IL-21 signaling is important in eliciting robust B cell-mediated immune responses in patients with kidney disease and KTR.


Asunto(s)
COVID-19 , Enfermedades Renales , Trasplante de Riñón , Humanos , Vacunas contra la COVID-19 , Vacuna nCoV-2019 mRNA-1273 , SARS-CoV-2 , Interleucinas , Inmunoglobulina G , Anticuerpos Antivirales , Inmunidad , Receptores de Trasplantes
14.
NPJ Vaccines ; 8(1): 70, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198189

RESUMEN

Cytokines are regulators of the immune response against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, the contribution of cytokine-secreting CD4+ and CD8+ memory T cells to the SARS-CoV-2-specific humoral immune response in immunocompromised kidney patients is unknown. Here, we profiled 12 cytokines after stimulation of whole blood obtained 28 days post second 100 µg mRNA-1273 vaccination with peptides covering the SARS-CoV-2 spike (S)-protein from patients with chronic kidney disease (CKD) stage 4/5, on dialysis, kidney transplant recipients (KTR), and healthy controls. Unsupervised hierarchical clustering analysis revealed two distinct vaccine-induced cytokine profiles. The first profile was characterized by high levels of T-helper (Th)1 (IL-2, TNF-α, and IFN-γ) and Th2 (IL-4, IL-5, IL-13) cytokines, and low levels of Th17 (IL-17A, IL-22) and Th9 (IL-9) cytokines. This cluster was dominated by patients with CKD, on dialysis, and healthy controls. In contrast, the second cytokine profile contained predominantly KTRs producing mainly Th1 cytokines upon re-stimulation, with lower levels or absence of Th2, Th17, and Th9 cytokines. Multivariate analyses indicated that a balanced memory T cell response with the production of Th1 and Th2 cytokines was associated with high levels of S1-specific binding and neutralizing antibodies mainly at 6 months after second vaccination. In conclusion, seroconversion is associated with the balanced production of cytokines by memory T cells. This emphasizes the importance of measuring multiple T cell cytokines to understand their influence on seroconversion and potentially gain more information about the protection induced by vaccine-induced memory T cells.

15.
J Antimicrob Chemother ; 78(7): 1644-1648, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37248664

RESUMEN

OBJECTIVES: Immunocompromised patients have an increased risk of severe or prolonged COVID-19. Currently available drugs are registered to treat COVID-19 during the first 5 to 7 days after symptom onset. Data on the effectivity in immunocompromised patients with chronic non-resolving COVID-19 are urgently needed. Here, we report the outcome of patients treated with nirmatrelvir/ritonavir together with high-titer convalescent plasma (CP) in six immunocompromised patients with non-resolving COVID-19. METHODS: Immunocompromised patients with persisting COVID-19 (positive PCR with Ct values <30 for ≥20 days) received off-label therapy with nirmatrelvir/ritonavir. It was combined with CP containing BA.5 neutralizing titers of ≥1/640 whenever available. Follow-up was done by PCR and sequencing on nasopharyngeal swabs on a weekly basis until viral genome was undetectable consecutively. RESULTS: Five immunocompromised patients were treated with high-titer CP and 5 days of nirmatrelvir/ritonavir. One patient received nirmatrelvir/ritonavir monotherapy. Median duration of SARS-CoV-2 PCR positivity was 70 (range 20-231) days before nirmatrelvir/ritonavir treatment. In four patients receiving combination therapy, no viral genome of SARS-CoV-2 was detected on day 7 and 14 after treatment while the patient receiving nirmatrelvir/ritonavir monotherapy, the day 7 Ct value increased to 34 and viral genome was undetectable thereafter. Treatment was unsuccessful in one patient. In this patient, sequencing after nirmatrelvir/ritonavir treatment did not show protease gene mutations. CONCLUSIONS: In immunocompromised patients with non-resolving COVID-19, the combination of nirmatrelvir/ritonavir and CP may be an effective treatment. Larger prospective studies are needed to confirm these preliminary results and should compare different treatment durations.


Asunto(s)
COVID-19 , Humanos , COVID-19/terapia , Ritonavir/uso terapéutico , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Sueroterapia para COVID-19 , Huésped Inmunocomprometido , Antivirales/uso terapéutico
16.
J Clin Immunol ; 43(6): 1104-1117, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37231290

RESUMEN

PURPOSE: Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective long-term protection against COVID-19 is therefore of great importance in these patients, but little is known about the decay of the immune response after primary vaccination. We studied the immune responses 6 months after two mRNA-1273 COVID-19 vaccines in 473 IEI patients and subsequently the response to a third mRNA COVID-19 vaccine in 50 patients with common variable immunodeficiency (CVID). METHODS: In a prospective multicenter study, 473 IEI patients (including X-linked agammaglobulinemia (XLA) (N = 18), combined immunodeficiency (CID) (N = 22), CVID (N = 203), isolated or undefined antibody deficiencies (N = 204), and phagocyte defects (N = 16)), and 179 controls were included and followed up to 6 months after two doses of the mRNA-1273 COVID-19 vaccine. Additionally, samples were collected from 50 CVID patients who received a third vaccine 6 months after primary vaccination through the national vaccination program. SARS-CoV-2-specific IgG titers, neutralizing antibodies, and T cell responses were assessed. RESULTS: At 6 months after vaccination, the geometric mean antibody titers (GMT) declined in both IEI patients and healthy controls, when compared to GMT 28 days after vaccination. The trajectory of this decline did not differ between controls and most IEI cohorts; however, antibody titers in CID, CVID, and isolated antibody deficiency patients more often dropped to below the responder cut-off compared to controls. Specific T cell responses were still detectable in 77% of controls and 68% of IEI patients at 6 months post vaccination. A third mRNA vaccine resulted in an antibody response in only two out of 30 CVID patients that did not seroconvert after two mRNA vaccines. CONCLUSION: A similar decline in IgG titers and T cell responses was observed in patients with IEI when compared to healthy controls 6 months after mRNA-1273 COVID-19 vaccination. The limited beneficial benefit of a third mRNA COVID-19 vaccine in previous non-responder CVID patients implicates that other protective strategies are needed for these vulnerable patients.


Asunto(s)
COVID-19 , Inmunodeficiencia Variable Común , Enfermedades de Inmunodeficiencia Primaria , Humanos , Vacuna nCoV-2019 mRNA-1273 , Vacunas contra la COVID-19 , COVID-19/prevención & control , Estudios Prospectivos , SARS-CoV-2 , Vacunación , Anticuerpos Antivirales , Inmunoglobulina G , ARN Mensajero/genética , Inmunidad
17.
Lancet Infect Dis ; 23(8): 901-913, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37088096

RESUMEN

BACKGROUND: Bivalent mRNA-based COVID-19 vaccines encoding the ancestral and omicron spike (S) protein were developed as a countermeasure against antigenically distinct SARS-CoV-2 variants. We aimed to assess the (variant-specific) immunogenicity and reactogenicity of mRNA-based bivalent omicron (BA.1) vaccines in individuals who were primed with adenovirus-based or mRNA-based vaccines encoding the ancestral spike protein. METHODS: We analysed results of the direct boost group of the SWITCH ON study, an open-label, multicentre, randomised controlled trial. Health-care workers from four academic hospitals in the Netherlands aged 18-65 years who had completed a primary COVID-19 vaccination regimen and received one booster of an mRNA-based vaccine, given no later than 3 months previously, were eligible. Participants were randomly assigned (1:1) using computer software in block sizes of 16 and 24 to receive an omicron BA.1 bivalent booster straight away (direct boost group) or a bivalent omicron BA.5 booster, postponed for 90 days (postponed boost group), stratified by priming regimen. The BNT162b2 OMI BA.1 boost was given to participants younger than 45 years, and the mRNA-1273.214 boost was given to participants 45 years or older, as per Dutch guidelines. The direct boost group, whose results are presented here, were divided into four subgroups for analysis: (1) Ad26.COV2.S (Johnson & Johnson) prime and BNT162b2 OMI BA.1 (BioNTech-Pfizer) boost (Ad/P), (2) mRNA-based prime and BNT162b2 OMI BA.1 boost (mRNA/P), (3) Ad26.COV2.S prime and mRNA-1273.214 (Moderna) boost (Ad/M), and (4) mRNA-based prime and mRNA-1273.214 boost (mRNA/M). The primary outcome was fold change in S protein S1 subunit-specific IgG antibodies before and 28 days after booster vaccination. The primary outcome and safety were assessed in all participants except those who withdrew, had a SARS-CoV-2 breakthrough infection, or had a missing blood sample at day 0 or day 28. This trial is registered with ClinicalTrials.gov, NCT05471440. FINDINGS: Between Sept 2 and Oct 4, 2022, 219 (50%) of 434 eligible participants were randomly assigned to the direct boost group; 187 participants were included in the primary analyses; exclusions were mainly due to SARS-CoV-2 infection between days 0 and 28. From the 187 included participants, 138 (74%) were female and 49 (26%) were male. 42 (22%) of 187 participants received Ad/P and 44 (24%) mRNA/P (those aged <45 years), and 45 (24%) had received Ad/M and 56 (30%) mRNA/M (those aged ≥45 years). S1-specific binding antibody concentrations increased 7 days after bivalent booster vaccination and remained stable over 28 days in all four subgroups (geometric mean ratio [GMR] between day 0 and day 28 was 1·15 [95% CI 1·12-1·19] for the Ad/P group, 1·17 [1·14-1·20] for the mRNA/P group, 1·20 [1·17-1·23] for the Ad/M group, and 1·16 [1·13-1·19] for the mRNA/M group). We observed no significant difference in the GMR between the Ad/P and mRNA/P groups (p=0·51). The GMR appeared to be higher in the Ad/M group than in the mRNA/M group, but was not significant (p=0·073). Most side-effects were mild to moderate in severity and resolved within 48 h in most individuals. INTERPRETATION: Booster vaccination with mRNA-1273.214 or BNT162b2 OMI BA.1 in adult healthcare workers resulted in a rapid recall of humoral and cellular immune responses independent of the priming regimen. Monitoring of SARS-CoV-2 immunity at the population level, and simultaneously antigenic drift at the virus level, remains crucial to assess the necessity and timing of COVID-19 variant-specific booster vaccinations. FUNDING: The Netherlands Organization for Health Research and Development (ZonMw).


Asunto(s)
Ad26COVS1 , COVID-19 , Adulto , Humanos , Femenino , Masculino , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Países Bajos , SARS-CoV-2/genética , Personal de Salud , Anticuerpos Antivirales , Inmunogenicidad Vacunal , Vacunación , Anticuerpos Neutralizantes
19.
Front Cell Infect Microbiol ; 13: 1013842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36798087

RESUMEN

Macrophages are amongst the first immune cells that encounter rabies virus (RABV) at virus entry sites. Activation of macrophages is essential for the onset of a potent immune response, but insights into the effects of RABV on macrophage activation are scarce. In this study we performed high-throughput sequencing on RNA extracted from macrophages that were exposed to RABV for 48 hours, and compared their transcriptional profiles to that of non-polarized macrophages (M0), and macrophages polarized towards the canonical M1, M2a and M2c phenotypes. Our analysis revealed that RABV-stimulated macrophages show high expression of several M1, M2a and M2c signature genes. Apart from their partial resemblance to these phenotypes, unbiased clustering analysis revealed that RABV induces a unique and distinct polarization program. Closer examination revealed that RABV induced multiple pathways related to the interferon- and antiviral response, which were not induced under other classical polarization strategies. Surprisingly, our data show that RABV induces an activated rather than a fully suppressed macrophage phenotype, triggering virus-induced activation and polarization. This includes multiple genes with known antiviral (e.g. APOBEC3A, IFIT/OAS/TRIM genes), which may play a role in anti-RABV immunity.


Asunto(s)
Virus de la Rabia , Rabia , Humanos , Virus de la Rabia/genética , Transcriptoma , Macrófagos/metabolismo , Antivirales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA